### 1.3 THE LIMIT OF A FUNCTION

| $x$ | $x^{3}+\frac{\cos 5 x}{10,000}$ |
| :--- | :---: |
| 1 | 1.000028 |
| 0.5 | 0.124920 |
| 0.1 | 0.001088 |
| 0.05 | 0.000222 |
| 0.01 | 0.000101 |

EXAMPLE A Find $\lim _{x \rightarrow 0}\left(x^{3}+\frac{\cos 5 x}{10,000}\right)$.
SOLUTION As before, we construct a table of values. From the table in the margin it appears that

$$
\lim _{x \rightarrow 0}\left(x^{3}+\frac{\cos 5 x}{10,000}\right)=0
$$

But if we persevere with smaller values of $x$, the table at left suggests that

$$
\lim _{x \rightarrow 0}\left(x^{3}+\frac{\cos 5 x}{10,000}\right)=0.000100=\frac{1}{10,000}
$$

Later we will see that $\lim _{x \rightarrow 0} \cos 5 x=1$; then it follows that the limit is 0.0001 .

EXAMPLE B If $f(x)=x^{2}-x+2$, how close to 2 does $x$ have to be to ensure that $f(x)$ is within a distance 0.1 of the number 4 ?

SOLUTION If the distance from $f(x)$ to 4 is less than 0.1 , then $f(x)$ lies between 3.9 and 4.1, so the requirement is that

$$
3.9<x^{2}-x+2<4.1
$$

Thus, we need to determine the values of $x$ such that the curve $y=x^{2}-x+2$ lies between the horizontal lines $y=3.9$ and $y=4.1$. We graph the curve and lines near the point $(2,4)$ in Figure 1. With the cursor, we estimate that the $x$-coordinate of the point of intersection of the line $y=3.9$ and the curve $y=x^{2}-x+2$ is about 1.966. Similarly, the curve intersects the line $y=4.1$ when $x \approx 2.033$. So, rounding to be safe, we conclude that

$$
3.9<x^{2}-x+2<4.1 \text { when } 1.97<x<2.03
$$

Therefore, $f(x)$ is within a distance 0.1 of 4 when $x$ is within a distance 0.03 of 2 .

